• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE
CS Logo
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
CS Logo

0

IEEE Computer Society Logo
Sign up for our newsletter
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Publications
  • /Tech News
  • /Events
  • Home
  • / ...
  • /Tech News
  • /Events

Celebrating the Invention of Electronic Digital Computing

By IEEE Computer Society Team on
May 1, 2023

Celebrating the Invention of Electronic Digital ComputingCelebrating the Invention of Electronic Digital ComputingThe IEEE JVA Symposium on Modern Computing as part of the IEEE Services Congress (2-6 July 2023, in Chicago) is dedicated to the inventor of electronic digital computing – John Vincent Atanasoff. The symposium serves as a tribute to this pioneer’s revolutionary accomplishments and celebration of Atanasoff’s 120th birthday. It brings together scientists, researchers, and professionals from different countries to discuss the future of computing and the legacy of Atanasoff's work.

A Congress-level plenary session will include John Gustafson, best known for the Gustafson’s Law, delivering a keynote presentation on “Ten Persistent Myths About the Atanasoff-Berry Computer.” This talk will provide a more fact-based and technical look at one of the more emotion-prone chapters in computing history: the creation of the Atanasoff-Berry Computer (ABC) in the late 1930s and early 1940s, and its influence on the computers that came later.

The symposium will also feature a Congress-level plenary panel on the invention of electronic digital computing. Chaired by Vladimir Getov (University of Westminster), the panel will include John V. Atanasoff II (JVA Initiative Chairman), Gordon Bell (Microsoft Research), Kiril Boyanov (Bulgarian Academy of Sciences), Carl Chang (Iowa State University), John Gustafson (Arizona State University), Hironori Kasahara (Waseda University), Dejan Milojicic (Hewlett Packard Labs), and Michael Williams (University of Calgary). The main goal of this roundtable discussion will be to recognize the exceptional contributions of John V. Atanasoff for the invention and development of electronic digital computing and computers, which marked the beginning of the information revolution.

Indeed, the first automatic digital electronic computer was invented in 1939 by Professor John Vincent Atanasoff, also known as the father of the computer. One of the key innovations that Atanasoff introduced was using binary digits instead of decimal numbers. This binary digit system allowed for faster calculations and the ability to store and retrieve information electronically. These features are essential to the modern supercomputers we have today. In addition to binary digits, Atanasoff's invention demonstrated the importance of memory and logic systems in computing. His computer used capacitors to store data, allowing faster access times than other devices. The machine also used a logical system based on Boolean algebra, which allowed for more efficient computation and data manipulation.

Today, supercomputers and servers rely heavily on electronic storage and retrieval of information, as well as parallel computing. It is not widely known that the Atanasoff–Berry Computer (ABC) used parallelism in its memory and computation systems. In the memory system, the ABC used capacitors arranged in a parallel fashion, which allowed multiple bits of data to be stored and accessed simultaneously. In the computation system, the ABC used a parallel method of calculation known as simultaneous equations. This involved solving multiple equations simultaneously, rather than one equation at a time. This parallel approach allowed for more efficient computation and faster processing times. These features are essential for today's computers, confirming that Atanasoff’s work laid the foundation for the development of modern information technologies.

LATEST NEWS
Resume Template
Resume Template
IEEE Reveals 2026 Predictions for Top Technology Trends 
IEEE Reveals 2026 Predictions for Top Technology Trends 
7 Best Practices for Secure Software Engineering in 2026
7 Best Practices for Secure Software Engineering in 2026
Muzeeb Mohammad: IEEE Computer Society Leader in Cloud Tech
Muzeeb Mohammad: IEEE Computer Society Leader in Cloud Tech
Setting the Standard: How SWEBOK Helps Organizations Build Reliable and Future-Ready Teams
Setting the Standard: How SWEBOK Helps Organizations Build Reliable and Future-Ready Teams
Read Next

Resume Template

IEEE Reveals 2026 Predictions for Top Technology Trends 

7 Best Practices for Secure Software Engineering in 2026

Muzeeb Mohammad: IEEE Computer Society Leader in Cloud Tech

Setting the Standard: How SWEBOK Helps Organizations Build Reliable and Future-Ready Teams

Computing’s Top 30: Bala Siva Sai Akhil Malepati

The Art of Code Meets the Standards of Science: Why SWEBOK Matters

Re-Engineering Cloud-Native Principles for Safety-Critical Software Systems

FacebookTwitterLinkedInInstagramYoutube
Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter