• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE
CS Logo
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
CS Logo

0

IEEE Computer Society Logo
Sign up for our newsletter
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Profiles
  • Home
  • /Profiles

Premkumar Devanbu

Award Recipient

Featured ImageFeatured ImagePrem Devanbu holds a degree in EE from IIT Madras, and a Ph.D in CS from Rutgers University. After some decades at Bell Labs, he joined UC Davis, where is now Distinguished Research Professor of Computer Science. His early work on GENOA (a general-purpose analysis tool for code) led to an enduring passion for finding ways to improve the productivity, reliability and quality of practical software systems. Between 2000 and 2005, he worked on the use of Merkle hash trees (aka ``blockchains”) for secure data out-sourcing. Starting around 2005, his work shifted to study the copious amounts of time-series data available in open-source repositories: how can this data be used to help improve software tools and processes? Devanbu has published several test-of-time award-winning papers which studied various aspects of the Data Science of software-related data, including: developer social networks, data quality, and modeling challenges. In 2012, Hindle, Barr, Su, and Devanbu published their “Naturalness of Software” work, introducing the notion that language models can effectively model source code. Subsequent work showed that discrete language models, customized for source code, worked for several tasks, including both code completion and code de-obfuscation. This work included a nested cache model, which could beat contemporaneous DNN auto-regressive models. Around 2017, working with Earl Barr and others, Devanbu realized that code is bimodal, allowing both algorithmic static analysis and statistical modeling. This has led to a line of work of bimodal approaches to training, pre-training, and prompt-engineering, for applications such as syntax error correction, code summarization, code repair, and code completion. Most recently, Devanbu’s work has been directed at helping human developers make better, safer use of output from language models. Devanbu has won the ACM SIGSOFT Outstanding Research Award, and the Alexander von Humboldt Research Prize. He is an ACM Fellow.
LATEST NEWS
Reimagining Infrastructure and Systems for Scientific Discovery and AI Collaboration
Reimagining Infrastructure and Systems for Scientific Discovery and AI Collaboration
IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age
IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age
Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development
Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development
IEEE Std 3158.1-2025 — Verifying Trust in Data Sharing: Standard for Testing and Performance of a Trusted Data Matrix System
IEEE Std 3158.1-2025 — Verifying Trust in Data Sharing: Standard for Testing and Performance of a Trusted Data Matrix System
IEEE Std 3220.01-2025: Standard for Consensus Framework for Blockchain System
IEEE Std 3220.01-2025: Standard for Consensus Framework for Blockchain System
Read Next

Reimagining Infrastructure and Systems for Scientific Discovery and AI Collaboration

IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age

Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development

IEEE Std 3158.1-2025 — Verifying Trust in Data Sharing: Standard for Testing and Performance of a Trusted Data Matrix System

IEEE Std 3220.01-2025: Standard for Consensus Framework for Blockchain System

Mapping the $85B AI Processor Landscape: Global Startup Surge, Market Consolidation Coming?

AI Agentic Mesh – A Foundational Architecture for Enterprise Autonomy

IEEE O.C A.I “DEVHACK” Hackathon 2025 Winner Celebration

FacebookTwitterLinkedInInstagramYoutube
Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter